Canadian Biomass Magazine

Cost-effective cellulosic biofuel

June 5, 2012
By Purdue University

June 5, 2012, West Lafayette, IN - A new Purdue University-developed process for creating biofuels has shown potential to be cost-effective for production scale, opening the door for moving beyond the laboratory setting.

June 5, 2012, West Lafayette, IN – A new Purdue University-developed process for creating biofuels has
shown potential to be cost-effective for production scale, opening the
door for moving beyond the laboratory setting.

A Purdue economic analysis shows that the cost of the thermo-chemical
H2Bioil method is competitive when crude oil is about $100 per barrel
when using certain energy methods to create hydrogen needed for the
process. If a federal carbon tax were implemented, the biofuel would
become even more economical.

H2Bioil is created when biomass, such as switchgrass or corn stover,
is heated rapidly to about 500 degrees Celcius in the presence of
pressurized hydrogen. Resulting gases are passed over catalysts, causing
reactions that separate oxygen from carbon molecules, making the carbon
molecules high in energy content, similar to gasoline molecules.

The conversion process was created in the lab of Rakesh Agrawal,
Purdue's Winthrop E. Stone Distinguished Professor of Chemical
Engineering. He said H2Bioil has significant advantages over traditional
standalone methods used to create fuels from biomass.

Advertisement

"The process is quite fast and converts entire biomass to liquid
fuel," Agrawal said. "As a result, the yields are substantially higher.
Once the process is fully developed, due to the use of external
hydrogen, the yield is expected to be two to three times that of the
current competing technologies."

The economic analysis, published in the June issue of Biomass Conversion and Biorefinery,
shows that the energy source used to create hydrogen for the process
makes all the difference when determining whether the biofuel is
cost-effective. Hydrogen processed using natural gas or coal makes the
H2Bioil cost-effective when crude oil is just over $100 per barrel. But
hydrogen derived from other, more expensive, energy sources – nuclear,
wind or solar – drive up the break-even point.

"We're in the ballpark," said Wally Tyner, Purdue's James and Lois
Ackerman Professor of Agricultural Economics. "In the past, I have said
that for biofuels to be competitive, crude prices would need to be at
about $120 per barrel. This process looks like it could be competitive
when crude is even a little cheaper than that."

Agrawal said he and colleagues Fabio Ribeiro, a Purdue professor of
chemical engineering, and Nick Delgass, Purdue's Maxine Spencer Nichols
Professor of Chemical Engineering, are working to develop catalysts
needed for the H2Bioil conversion processes. The method's initial
implementation has worked on a laboratory scale and is being refined so
it would become effective on a commercial scale.

"This economic analysis shows us that the process is viable on a
commercial scale," Agrawal said. "We can now go back to the lab and
focus on refining and improving the process with confidence."

The model Tyner used assumed that corn stover, switchgrass and
miscanthus would be the primary feedstocks. The analysis also found that
if a federal carbon tax were introduced, driving up the cost of coal
and natural gas, more expensive methods for producing hydrogen would
become competitive.

"If we had a carbon tax in the future, the break-even prices would
be competitive even for nuclear," Tyner said. "Wind and solar, not yet,
but maybe down the road."

The U.S. Department of Energy and the Air Force Office of Scientific
Research funded the research. Agrawal and his collaborators received a
U.S. patent for the conversion process.

More information on the research can be found by reading the abstract, which is available at: www.purdue.edu/newsroom/research/2012/120604TynerBioOil.html


Print this page

Advertisement

Stories continue below


Related